4.6 Article

Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol 3-kinase-dependent in breast carcinoma cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 40, Pages 29305-29313

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M704069200

Keywords

-

Ask authors/readers for more resources

Autocrine motility factor (AMF) is internalized via a receptor-mediated, dynamin-dependent, cholesterol-sensitive raft pathway to the smooth endoplasmic reticulum that is negatively regulated by caveolin-1. Expression of AMF and its receptor (AMFR) is associated with tumor progression and malignancy; however, the extent to which the raft-dependent uptake of AMF is tumor cell-specific has yet to be addressed. By Western blot and cell surface fluorescence-activated cell sorter (FACS) analysis, AMFR expression is increased in tumorigenic MCF7 and metastatic MDA-231 and MDA-435 breast cancer cell lines relative to dysplastic MCF10A mammary epithelial cells. AMF uptake, determined by FACS measurement of protease-insensitive internalized fluorescein-conjugated AMF, was increased in MCF7 and MDA-435 cells relative to MCF-10A and caveolin-1-expressing MDA-231 cells. Uptake of fluorescein-conjugated AMF was dynamin-dependent, methyl-beta-cyclodextrin- and genistein-sensitive, reduced upon overexpression of caveolin-1 in MDA-435 cells, and increased upon short hairpin RNA reduction of caveolin-1 in MDA-231 cells. Tissue microarray analysis of invasive primary human breast carcinomas showed that AMFR expression had no impact on survival but did correlate significantly with expression of phospho-Akt. Phospho-Akt expression was increased in AMF-internalizing MCF7 and MDA-435 breast carcinoma cells. AMF-uptake in these cells was reduced by phosphatidylinositol 3-kinase inhibition but not by regulators of macropinocytosis such as amiloride, phorbol ester, or actin cytoskeleton disruption by cytochalasin D. The raft-dependent endocytosis of AMF therefore follows a distinct phosphatidylinositol 3-kinase-dependent pathway that is up-regulated in more aggressive tumor cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available