4.6 Article

Nonvolatile nanocrystal charge trap flash memory devices using a micellar route to ordered arrays of cobalt nanocrystals

Journal

APPLIED PHYSICS LETTERS
Volume 91, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2798502

Keywords

-

Ask authors/readers for more resources

This study demonstrates that self-assembled diblock copolymer micelles can be used as a template to assemble cobalt (Co) nanocrystal (NC) arrays for use as charge storage layers in charge trap flash memory devices. Diblock copolymer micelles embedded with Co were synthesized on p-Si substrates having a thin tunneling oxide of HfO2. The micelle templates were completely removed by oxygen plasma treatment and reduction procedures, resulting in ordered arrays of Co NCs. The nonvolatile memory devices exhibit program/erase characteristics, as confirmed by their capacitance-voltage responses, current-voltage responses, endurance characterization, and nanoscale device measurement using scanning nonlinear dielectric microscopy. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available