4.6 Article

CD11b+Ly-6Chi suppressive monocytes in experimental autoimmune encephalomyelitis

Journal

JOURNAL OF IMMUNOLOGY
Volume 179, Issue 8, Pages 5228-5237

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.179.8.5228

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI058680, AI043496] Funding Source: Medline

Ask authors/readers for more resources

Innate immune cells may regulate adaptive immunity by balancing different lineages of T cells and providing negative costimulation. In addition, CD11b(+)Gr-1(+) myeloid-derived suppressor cells have been described in tumor, parasite infection, and severe trauma models. In this study, we observe that splenic CD11b(+) cells markedly increase after experimental autoimmune encephalomyelitis (EAE) immunization, and they suppress T cell proliferation in vitro. Although >80% of CD11b(+) cells express varying levels of Gr-1, only a small population of CD11b(+)Ly-6C(high) inflammatory monocytes (IMC) can efficiently suppress T cell proliferation and induce T cell apoptosis through the production of NO. IEFN-gamma produced by activated T cells is essential to induce IMC suppressive function. EAE immunization increases the frequencies of IMC in the bone marrow, spleen, and blood, but not in the lymph nodes. At the peak of EAE, IMC represent similar to 30% of inflammatory cells in the CNS. IMC express F4/80 and CD93 but not CD31, suggesting that they are immature monocytes. Furthermore, IMC have the plasticity to up-regulate NO synthase 2 or arginase I expression upon different cytokine treatments. These findings indicate that CD11b+Ly-6Chigh IMC induced during EAE priming are powerful suppressors of activated T cells. Further understanding of suppressive monocytes in autoimmune disease models may have important clinical implications for human autoimmune diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available