4.5 Article

Sensing of adenosine-5'-triphosphate anion in aqueous solutions and mitochondria by a fluorescent 3-hydroxyflavone dye

Journal

ANALYTICAL BIOCHEMISTRY
Volume 369, Issue 2, Pages 218-225

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2007.05.005

Keywords

-

Ask authors/readers for more resources

The current work demonstrates the formation of complexes between the tetraanion acienosine-5'-triphosphate (ATP) and the flavone derivative 3-hydroxy-4'-(dimethylamino)flavone (FME). Two kinds of complexes are evidenced. The higher affinity ATP-FME complex corresponds to a stacking of the two aromatic molecules and leads to a strong hypochromicity of the absorption spectrum of the dye. The lower affinity (ATP)(2)-FME complex results in a strong increase of the fluorescence intensity (similar to 20-fold), due mainly to the appearance of the anionic form of FME, as shown by the important red shift (60 nm) of both excitation and emission spectra. Molecular modeling indicates that this anionic form results from the deprotonation induced by the influence of the tetra-charged triphosphate group of the ATP molecules. Using its strong enhancement of fluorescence intensity in the presence of ATP, the dye was used successfully to monitor the succinate-induced production of endogenous ATP in mitochondria. As a consequence, FME can be considered as a starting point to design efficient ATP sensors. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available