4.6 Article

Atomic structure in Zr70Ni30 metallic glass

Journal

JOURNAL OF APPLIED PHYSICS
Volume 102, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2798386

Keywords

-

Ask authors/readers for more resources

Atomic structure of Zr70Ni30 metallic glass (MG) was investigated by reverse Monte Carlo simulation combining with x-ray diffraction and Ni and Zr K-edge extended x-ray absorption of fine structure measurements. Distributions of coordination number (CN) and Voronoi clusters were analyzed by Voronoi tessellation method. The average CN of atoms was obtained to be 11.4 together with the average CN of Zr and Ni atoms of about 11.8 and 10.6, respectively. It is found that Z11 Kasper polyhedron and distorted icosahedra are mainly favored structural units in Zr70Ni30 MG. The discrepancy in atomic structure between Zr70Ni30 MG and its corresponding crystalline (or quasicrystalline) phases can explain the fact that Zr70Ni30 MG does not transform to neither icosahedral nor fcc Zr2Ni phase during crystallization process. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available