4.6 Article

Photoinduced vibrational coherence transfer in molecular dimers

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 111, Issue 41, Pages 10212-10219

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0709050

Keywords

-

Ask authors/readers for more resources

At short times that are faster than dephasing, photoinduced evolution of the vibrational subsystem in an electron-phonon molecular structure depends strongly on the electronic evolution. As the electronic population shifts between the donor and acceptor states, in the diabatic description the state with the largest population determines the equilibrium positions and frequencies of the vibrational modes, which oscillate continuously and without loss of coherence. The vibrational coherence transfer between the electronic states detected recently in a number of systems is described theoretically by application of the quantized Hamiltonian dynamics (QHD) formalism [J. Chem. Phys. 2000, 113, 6557] to the coupled electronic and vibrational degrees of freedom of a model heterodimer. The observed coherent modulation of the frequency of the probe signal is represented with simple analytic and numeric QHD models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available