4.6 Article

Role of ADAM-9 disintegrin-cysteine-rich domains in human keratinocyte migration

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 42, Pages 30785-30793

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M701658200

Keywords

-

Ask authors/readers for more resources

ADAM-9 belongs to a family of transmembrane, disintegrin-containing metalloproteinases involved in protein ectodomain shedding and cell-cell and cell-matrix interactions. The aim of this study was to analyze the expression of ADAM-9 in skin and to assess the role of this proteolytic/adhesive protein in skin physiology. In normal skin, ADAM-9expression was detected in both the epidermis and dermis and in vitro in keratinocytes and fibroblasts. Here we report that ADAM-9 functions as a cell adhesion molecule via its disintegrin-cysteine-rich domain. Using solid phase binding assays and antibody inhibition experiments, we demonstrated that the recombinant disintegrin-cysteine-rich domain of ADAM-9 specifically interacts with the beta 1 integrin subunit on keratinocytes. This was corroborated by co-immunoprecipitation. In addition, engagement of integrin receptors by the disintegrin-cysteine-rich domain resulted in ERK phosphorylation and increased MMP-9 synthesis. Treatment with the ERK inhibitor PD98059 inhibited MMP-9 induction. Furthermore, the presence of the soluble disintegrin-cysteine-rich domain did not interfere with cell migration on different substrates. However, keratinocytes adhering to the immobilized disintegrin-cysteine-rich domain showed increased motility, which was partially due to the induction of MMP-9 secretion. In summary, our results indicate that the ADAM-9 adhesive domain plays a role in regulating the motility of cells by interaction with beta 1 integrins and modulates MMP synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available