4.6 Article

The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 42, Pages 31019-31027

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M702838200

Keywords

-

Funding

  1. NCI NIH HHS [P30CA046592] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK56731, DK20572, R01 DK78135, R01 DK57768] Funding Source: Medline

Ask authors/readers for more resources

The action of leptin via the long form of its receptor (LepRb) is central to the control of body energy homeostasis and neuroendocrine function, but the mechanisms by which LepRb regulates intracellular signaling have remained incompletely understood. Here we demonstrate that leptin stimulates the phosphorylation of STAT5 and ribosomal protein S6 in the hypothalamic arcuate nucleus in mice. In cultured cells, we investigate the mechanisms by which leptin regulates each of these pathways. Our analysis reveals a dominant role for LepRb Tyr(1077) ( which we demonstrate to be phosphorylated during receptor activation) and a secondary role for LepRb Tyr(1138) in the acute phosphorylation of STAT5a and STAT5b. Tyr(1138) and STAT3 attenuate STAT5-dependent transcription over the long-term, however. In contrast, Tyr(985) ( the LepRb phosphorylation site required for ERK activation) mediates the phosphorylation of the ribosomal S6 kinase (RSK) and S6, as well as cap-dependent translation. Thus, these data demonstrate the phosphorylation of Tyr(1077) on LepRb during receptor activation, substantiate the hypothalamic regulation of STAT5 and S6 by leptin, and define the alternate LepRb signaling pathways that mediate each of these signals and their effects in cultured cells. Dissecting the contributions of these individual pathways to leptin action will be important for our ultimate understanding of the processes that regulate energy balance in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available