4.7 Article

Increasing methotrexate resistance by combination of active-site mutations in human dihydrofolate reductase

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 373, Issue 3, Pages 599-611

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2007.07.076

Keywords

dihydrofolate reductase; mutagenesis; drug resistance; enzyme kinetics; in vivo selection

Ask authors/readers for more resources

Methotrexate-resistant forms of human dihydrofolate reductase have the potential to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis during cancer therapy. It has been shown that synergistic MTX-resistance can be obtained by combining two active-site mutations that independently confer weak MTX-resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase (hDHFR) variants for this application, we used a semi-rational approach to obtain combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We created a combinatorial mutant library encoding various amino acids at residues Phe31, Phe34 and GIn35. In vivo library selection was achieved in a bacterial system on medium containing high concentrations of MTX. We characterized ten novel MTX-resistant mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and inhibition parameters of the purified mutants revealed that higher MTX-resistance roughly correlated with a greater number of mutations, the most highly-resistant mutants containing three active site mutations (K-i(MTX) = 59-180 nM; wild-type K-i(MTX) < 0.03 nM). An inverse correlation was observed between resistance and catalytic efficiency, which decreased mostly as a result of increased Km toward the substrate dihydrofolate. We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX toxicity by transfecting the most resistant mutants into DHFR-knockout CHO cells. The transfected variants conferred survival at concentrations of MTX between 100-fold and >4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering protection beyond the maximal concentration of MTX that could be included in the medium. These highly resistant variants of hDHFR offer potential for myeloprotection during administration of MTX in cancer treatment. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available