4.8 Article

Temperature dependence of coherent oscillations in josephson phase qubits

Journal

PHYSICAL REVIEW LETTERS
Volume 99, Issue 17, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.99.170504

Keywords

-

Ask authors/readers for more resources

We experimentally investigate the temperature dependence of Rabi oscillations and Ramsey fringes in superconducting phase qubits. In a wide range of temperatures, we find that both the decay time and the amplitude of these coherent oscillations remain nearly unaffected by thermal fluctuations. In the two-level limit, coherent qubit response rapidly vanishes as soon as the energy of thermal fluctuations k(B)T becomes larger than the energy level spacing h omega of the qubit. In contrast, a sample of much shorter coherence times displayed semiclassical oscillations very similar to Rabi oscillation, but showing a qualitatively different temperature dependence. Our observations shed new light on the origin of decoherence in superconducting qubits. The experimental data suggest that, without degrading already achieved coherence times, phase qubits can be operated at temperatures much higher than those reported till now.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available