4.7 Article

Functional specificity lies within the properties and evolutionary changes of amino acids

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 373, Issue 3, Pages 801-810

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2007.08.036

Keywords

functional divergence; subfamily specificity; physico-chemical properties; combined relative entropy; evolutionary rate

Ask authors/readers for more resources

The rapid increase in the amount of protein sequence data has created a need for automated identification of sites that determine functional specificity among related subfamilies of proteins. A significant fraction of subfamily specific sites are only marginally conserved, which makes it extremely challenging to detect those amino acid changes that lead to functional diversification. To address this critical problem we developed a method named SPEER (specificity prediction using amino acids' properties, entropy and evolution rate) to distinguish specificity determining sites from others. SPEER encodes the conservation patterns of amino acid types using their physico-chemical properties and the heterogeneity of evolutionary changes between and within the subfamilies. To test the method, we compiled a test set containing 13 protein families with known specificity determining sites. Extensive benchmarking by comparing the performance of SPEER with other specificity site prediction algorithms has shown that it performs better in predicting several categories of subfamily specific sites. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available