4.7 Article

Accurate extrapolation of electron correlation energies from small basis sets

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2768359

Keywords

-

Ask authors/readers for more resources

A new two-point scheme is proposed for the extrapolation of electron correlation energies obtained with small basis sets. Using the series of correlation-consistent polarized valence basis sets, cc-pVXZ, the basis set truncation error is expressed as delta E-X proportional to(X+xi(i))(-gamma). The angular momentum offset xi(i) captures differences in effective rates of convergence previously observed for first-row molecules. It is based on simple electron counts and tends to values close to 0 for hydrogen-rich compounds and values closer to 1 for pure first-row compounds containing several electronegative atoms. The formula is motivated theoretically by the structure of correlation-consistent basis sets which include basis functions up to angular momentum L=X-1 for hydrogen and helium and up to L=X for first-row atoms. It contains three parameters which are calibrated against a large set of 105 reference molecules (H, C, N, O, F) for extrapolations of MP2 and CCSD valence-shell correlation energies from double- and triple-zeta (DT) and triple- and quadruple-zeta (TQ) basis sets. The new model is shown to be three to five times more accurate than previous two-point schemes using a single parameter, and (TQ) extrapolations are found to reproduce a small set of available R12 reference data better than even (56) extrapolations using the conventional asymptotic limit formula delta E-X proportional to X-3. Applications to a small selection of boron compounds and to neon show very satisfactory results as well. Limitations of the model are discussed. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available