4.7 Article

Paucity of Pericytes in germinal matrix vasculature of premature infants

Journal

JOURNAL OF NEUROSCIENCE
Volume 27, Issue 44, Pages 12012-12024

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3281-07.2007

Keywords

GM; intraventricular hemorrhage; GM hemorrhage; pericytes; cortex; white matter; PDGF-B; PDGFR-beta; TGF-beta; ALK-1; ALK-5; N-cadherin; sphingosine 1 phosphate

Categories

Funding

  1. NINDS NIH HHS [R21 NS050586, NS050586] Funding Source: Medline

Ask authors/readers for more resources

Germinal matrix ( GM) is a richly vascularized collection of neuronal - glial precursor cells in the developing brain, which is selectively vulnerable to hemorrhage in premature infants. It has rapid angiogenesis associated with high levels of vascular endothelial growth factor ( VEGF). Because pericytes provide structural stability to blood vessels, we asked whether pericytes were fewer in the GM than in the subjacent white matter and neocortex and, if so, whether angiogenic inhibition could increase the pericyte density in the GM. We found pericyte coverage and density less in the GM vasculature than in the cortex or white matter in human fetuses, premature infants, and premature rabbit pups. Notably, although VEGF suppression significantly enhanced pericyte coverage in the GM, it remained less than in other brain regions. Therefore, to further elucidate the basis of fewer pericytes in the GM vasculature, we examined expression of ligand - receptor systems responsible for pericyte recruitment. Transforming growth factor-beta 1 (TGF-beta 1) protein expression was lower, whereas sphingosine-1-phosphatel (S1P1) and N-cadherin levels were higher in the GM than in the cortex or white matter. Low TGF-beta 1 whereas sphingosine-1-phosphatel (S1P1) and N-cadherin levels were higher in the GM than in the cortex or white matter. Low TGF- whereas sphingosine-1-phosphatel (S1P1) and N-cadherin levels were higher in the GM than in the cortex or white matter. Low TGF-beta 1 may be involved in promoting endothelial proliferation, whereas elevated S1P1 with N-cadherin may assist vascular maturation. Hence, a paucity of pericytes in the GM vasculature may contribute to its propensity to hemorrhage, and a lower expression of TGF-beta 1 could be a basis of reduced pericyte density in its vasculature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available