3.8 Article

Protein disulfide isomerase-immunopositive inclusions in patients with amyotrophic lateral sclerosis

Journal

AMYOTROPHIC LATERAL SCLEROSIS
Volume 12, Issue 6, Pages 444-450

Publisher

INFORMA HEALTHCARE
DOI: 10.3109/17482968.2011.594055

Keywords

Amyotrophic lateral sclerosis; protein disulfide isomerase; Lewy body-like hyaline inclusion; misfolded protein; unfolded protein response

Funding

  1. Eijinkai medical group in Japan
  2. Grants-in-Aid for Scientific Research [21500336] Funding Source: KAKEN

Ask authors/readers for more resources

The major pathological hallmarks of amyotrophic lateral sclerosis (ALS) are neuronal cytoplasmic inclusions (NCIs) and swollen neurites. Superoxide dismutase (SOD)-1-immunopositive NCIs are observed in patients with familial ALS (FALS), and TAR DNA-binding protein 43kDa (TDP-43)-immunopositive NCIs are found in patients with sporadic ALS (SALS). Protein disulfide isomerase (PDI) is a member of the thioredoxin superfamily and is believed to accelerate the folding of disulfide-bonded proteins by catalyzing the disulfide interchange reaction, which is the rate-limiting step during protein folding in the luminal space of the endoplasmic reticulum. Post mortem spinal cord specimens from five patients with SALS and one with FALS (I113T), and five normal controls were utilized in this immunohistochemical study. We found PDI-immunopositive swollen neurites and NCIs in the patients with ALS. Furthermore, PDI was colocalized with TDP-43 and SOD1 in NCIs. The accumulation of misfolding proteins may disturb axon transport and make swollen neurites. As the motor neuron is the longest cell in the nervous system, the motor system may selectively be disturbed. In conclusion, we assume that PDI is S-nitrosylated in the affected neurons, which inhibits its enzymatic activity and thus allows protein misfolding to occur in ALS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available