4.6 Article

Subgap tunneling via a quantum interference effect:: Insulators and charge density waves

Journal

PHYSICAL REVIEW B
Volume 76, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.184503

Keywords

-

Ask authors/readers for more resources

A quantum interference effect is discussed for subgap tunneling over a distance comparable to the coherence length, which is a consequence of advanced-advanced and retarded-retarded transmission modes [Altland and Zirnbauer, Phys. Rev. B 55, 1142 (1997)]. Effects typical of disorder are obtained from the interplay between multichannel averaging and higher order processes in the tunnel amplitudes. Quantum interference effects similar to those occurring in normal tunnel junctions explain magnetoresistance oscillations of a CDW pierced by nanoholes [Latyshev , Phys. Rev. Lett. 78, 919 (1997)], having periodicity h/2e as a function of the flux enclosed in the nanohole. Subgap tunneling is coupled to the sliding motion by charge accumulation in the interrupted chains. The effect is within the same trend as random matrix theory for normal metal-CDW hybrids [Visscher , Phys. Rev. B 62, 6873 (2000)]. We suggest that the experiment by Latyshev probes weak localizationlike properties of evanescent quasiparticles, not an interference effect related to the quantum-mechanical ground state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available