4.2 Article

Protective role of nitric oxide during hydrogen peroxide-induced oxidative stress in tobacco plants

Journal

RUSSIAN JOURNAL OF PLANT PHYSIOLOGY
Volume 54, Issue 6, Pages 755-762

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S1021443707060064

Keywords

nicotiana plumbaginifolia; apoptosis; ATP; caspases; lipid peroxidation; protein content; DNA; fragmentation

Categories

Ask authors/readers for more resources

Nitric oxide, produced from exogenous NO donor, sodium nitroprusside, and hydrogen peroxide exerted antagonistic effects on tobacco leaves at micromolar concentrations but induced synergistic effects at millimolar concentrations. During H2O2-induced oxidative stress, low concentrations of NO inhibited lipid peroxidation, counteracted the fragmentation of total DNA, and prevented accumulation of soluble proteins in Nicotiana plumbaginifolia cells. When applied at high concentrations, NO induced the caspase-like activity, promoted degradation of DNA and soluble proteins, and reduced ATP synthesis. The results are consistent with the hypothesis that NO performs a dual role in plants, acting as antioxidant (scavenger of reactive oxygen species) and as a signaling messenger. There are grounds to believe that, irrespective of the mechanism involved, nitric oxide performs a protective role during oxidative stress in tobacco leaves, because even high concentrations of NO exerted no immediate toxic effect but induced the programmed cell death through the activation of caspase-like proteases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available