4.4 Article

Growth control of golgi phosphoinositides by reciprocal localization of sac1 lipid phosphatase and pik1 4-kinase

Journal

TRAFFIC
Volume 8, Issue 11, Pages 1554-1567

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1600-0854.2007.00632.x

Keywords

cell growth; endoplasmic reticulum; Golgi apparatus; phosphoinositides; Pik1p; Rer1p; Sac1p

Categories

Funding

  1. NIGMS NIH HHS [GM071569] Funding Source: Medline

Ask authors/readers for more resources

Compartment-specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol-4-phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation. Here, we report that a C-terminal region in Sac1p is required for retention in the perinuclear ER, whereas the N-terminal domain is responsible for Golgi localization. We also show that starvation-induced shuttling of Sac1p to the Golgi depends on the coat protein complex II and the Rer1 adaptor protein. Starvation-induced shuttling of Sac1p to the Golgi specifically eliminates a pool of PI(4)P generated by the lipid kinase Pik1p. In addition, absence of nutrients leads to a rapid dissociation of Pik1p, together with its non-catalytical subunit Frq1p, from Golgi membranes. Reciprocal rounds of association/dissociation of the Sac1p lipid phosphatase and the Pik1p/Frq1p lipid kinase complex are responsible for growth-dependent control of Golgi phosphoinositides. Sac1p and Pik1p/Frq1p are therefore elements of a unique machinery that synchronizes ER and Golgi function in response to different growth conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available