4.4 Article

Quantification of cyclic electron flow around Photosystem I in spinach leaves during photosynthetic induction

Journal

PHOTOSYNTHESIS RESEARCH
Volume 94, Issue 2-3, Pages 347-357

Publisher

SPRINGER
DOI: 10.1007/s11120-006-9127-z

Keywords

cyclic electron transport; P700; photosynthetic induction; Photosystem I

Categories

Ask authors/readers for more resources

The variation of the rate of cyclic electron transport around Photosystem I (PS I) during photosynthetic induction was investigated by illuminating dark-adapted spinach leaf discs with red + far-red actinic light for a varied duration, followed by abruptly turning off the light. The post-illumination re-reduction kinetics of P700(+), the oxidized form of the photoactive chlorophyll of the reaction centre of PS I (normalized to the total P700 content), was well described by the sum of three negative exponential terms. The analysis gave a light-induced total electron flux from which the linear electron flux through PS II and PS I could be subtracted, yielding a cyclic electron flux. Our results show that the cyclic electron flux was small in the very early phase of photosynthetic induction, rose to a maximum at about 30 s of illumination, and declined subsequently to < 10% of the total electron flux in the steady state. Further, this cyclic electron flow, largely responsible for the fast and intermediate exponential decays, was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, suggesting an important role of redox poising of the cyclic components for optimal function. Significantly, our results demonstrate that analysis of the post-illumination re-reduction kinetics of P700(+) allows the quantification of the cyclic electron flux in intact leaves by a relatively straightforward method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available