4.5 Review

Pyroptosis and host cell death responses during Salmonella infection

Journal

CELLULAR MICROBIOLOGY
Volume 9, Issue 11, Pages 2562-2570

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1462-5822.2007.01036.x

Keywords

-

Funding

  1. NHGRI NIH HHS [P50 HG02360] Funding Source: Medline
  2. NIAID NIH HHS [AI47242] Funding Source: Medline

Ask authors/readers for more resources

Salmonella enterica are facultatively intracellular pathogens causing diseases with markedly visible signs of inflammation. During infection, Salmonella interacts with various host cell types, often resulting in death of those cells. Salmonella induces intestinal epithelial cell death via apoptosis, a cell death programme with a notably non-inflammatory outcome. In contrast, macrophage infection triggers caspase-1-dependent proinflammatory programmed cell death, a recently recognized process termed pyroptosis, which is distinguished from other forms of cellular demise by its unique mechanism, features and inflammatory outcome. Rapid macrophage pyroptosis depends on the Salmonella pathogenicity island-1 type III secretion system (T3SS) and flagella. Salmonella dynamically modulates induction of macrophage pyroptosis, and regulation of T3SS systems permits bacterial replication in specialized intracellular niches within macrophages. However, these infected macrophages later undergo a delayed form of caspase-1-dependent pyroptosis. Caspase-1-deficient mice are more susceptible to a number of bacterial infections, including salmonellosis, and pyroptosis is therefore considered a generalized protective host response to infection. Thus, Salmonella-induced pyroptosis serves as a model to understand a broadly important pathway of proinflammatory programmed host cell death: examining this system affords insight into mechanisms of both beneficial and pathological cell death and strategies employed by pathogens to modulate host responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available