4.7 Article

Leading order calculation of shear viscosity in hot quantum electrodynamics from diagrammatic methods

Journal

PHYSICAL REVIEW D
Volume 76, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.76.105019

Keywords

-

Ask authors/readers for more resources

We compute the shear viscosity at leading order in hot quantum electrodynamics. Starting from the Kubo relation for shear viscosity, we use diagrammatic methods to write down the appropriate integral equations for bosonic and fermionic effective vertices. We also show how Ward identities can be used to put constraints on these integral equations. One of our main results is an equation relating the kernels of the integral equations with functional derivatives of the full self-energy; it is similar to what is obtained with two-particle-irreducible effective action methods. However, since we use Ward identities as our starting point, gauge invariance is preserved. Using these constraints obtained from Ward identities and also power counting arguments, we select the necessary diagrams that must be resummed at leading order. This includes all noncollinear (corresponding to 2 to 2 scatterings) and collinear (corresponding to 1+N to 2+N collinear scatterings) rungs responsible for the Landau-Pomeranchuk-Migdal effect. We also show the equivalence between our integral equations obtained from quantum field theory and the linearized Boltzmann equations of Arnold, Moore and Yaffe obtained using effective kinetic theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available