4.6 Article

Long-range coupling and scalable architecture for superconducting flux qubits

Journal

PHYSICAL REVIEW B
Volume 76, Issue 17, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.174507

Keywords

-

Ask authors/readers for more resources

Constructing a fault-tolerant quantum computer is a daunting task. Given any design, it is possible to determine the maximum error rate of each type of component that can be tolerated while still permitting arbitrarily large-scale quantum computation. It is an underappreciated fact that including an appropriately designed mechanism enabling long-range qubit coupling or transport substantially increases the maximum tolerable error rates of all components. With this thought in mind, we take the superconducting flux qubit coupling mechanism described by Plourde [Phys. Rev. B 70, 140501(R) (2004)] and extend it to allow approximately 500 MHz coupling of square flux qubits, 50 mu m a side, at a distance of up to several millimeters. This mechanism is then used as the basis of two scalable architectures for flux qubits taking into account cross-talk and fault-tolerant considerations such as permitting a universal set of logical gates, parallelism, measurement and initialization, and data mobility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available