4.6 Article

The intrinsically disordered TC-1 interacts with Chibby via regions with high helical propensity

Journal

PROTEIN SCIENCE
Volume 16, Issue 11, Pages 2510-2518

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1110/ps.073062707

Keywords

thyroid cancer 1 (TC-1); Chibby (Cby); nuclear magnetic resonance; disordered protein; Wnt/beta-catenin signaling pathway; cancers

Ask authors/readers for more resources

Thyroid cancer 1 (TC-1) is a 106-residue naturally disordered protein that has been found to associate with thyroid, gastric, and breast cancers. Recent studies showed that the protein functions as a positive regulator in the Wnt/beta-catenin signaling pathway, a pathway that is known to play essential roles in developmental processes and causes tumor formation when misregulated. By competing with beta-catenin for binding to Chibby (Cby), a conserved nuclear protein that antagonizes the beta-catenin-mediated transcriptions, TC-1 up-regulates a number of beta-catenin target genes that are known to be involved in the aggressive behavior of cancers. In order to gain a molecular understanding of the role TC-1 plays in regulating the Wnt/beta-catenin signaling pathway, detailed structural studies of the protein and its interaction with Cby are essential. In this work, we used nuclear magnetic resonance (NMR) spectroscopy to elucidate the structure of TC-1 and its interaction with Cby. Our results indicate that even though TC-1 is naturally disordered, the protein adopts fairly compact conformations under nondenaturing conditions. Chemical shift analysis and relaxation measurements show that three regions (D44-R53, K58-A64, and D73-T88) with high-helical propensity are present in the C-terminal portion of TC-1. Upon addition of Cby, significant broadening of resonance signals derived from these helical regions of TC-1 was observed. The result indicates that the intrinsically disordered TC-1 interacts with Cby via its transient helical structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available