4.7 Article

Surface speciation of Cd(II) and Pb(II) on kaolinite by XAFS spectroscopy

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 315, Issue 1, Pages 21-32

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.05.022

Keywords

EXAFS spectroscopy; surface structure; adsorption; gibbsite; polynuclear complexes; steric hindrance

Ask authors/readers for more resources

Little spectroscopic evidence exists in the literature describing the surface complexation of cadmium (Cd) and lead (Pb) on kaolinite, the dominant clay mineral present in highly weathered soils of tropical and humid climates. X-ray absorption fine structure (XAFS) spectroscopy data at the Cd K and Pb L-III edges were collected on Cd- and Pb-sorbed kaolinite samples and compared to a suite of reference materials including Pb and Cd sorbed on amorphous (am-)gibbsite. Cadmium formed dominantly (> 75%) outer sphere complexes on kaolinite and a small fraction of CdOHCl complexes. In contrast Cd adsorbed as an inner sphere complex on gibbsite, suggesting that the Si tetrahedral sheet hindered Cd sorption to the Al octahedral sheet on kaolinite. Lead formed polymeric complexes, which bonded to kaolinite via edge sharing with surface Al octahedra. Two distinct Pb-Al edge-sharing distances on am-gibbsite, as opposed to one on kaolinite, suggested a similar steric hindrance effect for the surface complexation of polymeric Pb complexes on kaolinite. The results of this study show that the Si tetrahedral sheet limited the surface complexation of Cd and Pb on kaolinite, elevating kaolinite's permanent negative charge properties in retaining these heavy metals at its surface. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available