4.8 Article

Effect of particle dimension on biocompatibility of carbon nanomaterials

Journal

CARBON
Volume 45, Issue 14, Pages 2828-2835

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2007.08.039

Keywords

-

Ask authors/readers for more resources

With various emerging applications ranging from medicine to materials and electronics, the risk of exposure to nanomaterials is rapidly increasing. Several routes of exposure to nanomaterials exist; the most important being dermal contact and inhalation. In this dermal toxicity study, the cellular effects of carbon-based materials with diameters ranging from micro- to nano-dimension were investigated using mouse keratinocytes (HEL-30). The carbon materials tested included carbon fibers (CF; 10 mu m, diameter), carbon nanofibers (CNF; 100 nm diameter), multi-walled carbon nanotubes (MWCNT; 10 nm diameter), and single-walled carbon nanotubes (SWCNT; 1 nm diameter). CF and CNF did not significantly affect cell viability; however, MWCNT and SWCNT reduced cell viability in a time-dependent manner up to 48 h, with full recovery of mitochondrial function by the 72 h time point. After a 24 h exposure, cells exposed to MWCNT produced up to 3-fold higher increase in reactive oxygen species than those exposed to SWCNT. The results of this study suggest that high-aspect ratio carbon material toxicity is dependent on dimension and composition. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available