4.6 Article

Interplay and optimization of decoherence mechanisms in the optical control of spin quantum bits implemented on a semiconductor quantum dot

Journal

PHYSICAL REVIEW B
Volume 76, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.205305

Keywords

-

Ask authors/readers for more resources

We study the influence of the environment on an optically induced rotation of a single electron spin in a charged semiconductor quantum dot. We analyze the decoherence mechanisms resulting from the dynamical lattice response to the charge evolution induced in a trion-based optical spin control scheme. Moreover, we study the effect of the finite trion lifetime and of the imperfections of the unitary evolution such as off-resonant excitations and the nonadiabaticity of the driving. We calculate the total error of the operation on a spin-based qubit in an InAs/GaAs quantum dot system and discuss possible optimization against the different contributions. We indicate the parameters which allow for coherent control of the spin with a single qubit gate error as low as 10(-4).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available