4.7 Article

Development of a highly sensitive, high-throughput, mass Spectrometry-Based assay for rat procollagen type-I N-terminal propeptide (PINP) to measure bone formation activity

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 6, Issue 11, Pages 4218-4229

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr070288s

Keywords

biomarker; mass spectrometry; multiple reaction monitoring (MRM); ion trap; proteomics; osteoporosis; PTH; PINP

Ask authors/readers for more resources

Type-I procollagen aminoterminal propeptide (PINP) is a useful biomarker for bone formation activity that is used to monitor treatment of bone disorders including osteoporosis. Studies with human patients under long-term therapy for osteoporosis by daily injection of parathyroid hormone (PTH) demonstrated that the circulating level of PINP at 3 months of treatment, measured by radioimmunoassay, was a good predictor for bone mineral density (BMD) at 18 months. It is important to have PINP assays for other species to elucidate processes of bone formation and for the development of new therapeutic options that can enhance bone formation activity. Currently, only a human PINP radioimmunoassay is commercially available for clinical use, which may not be cross reactive with PINP from other species. For example, rat PINP has little amino acid sequence homology to human PINP. Therefore, we developed a new, highly sensitive, high-throughput mass spectrometry-based assay for PINP from rat plasma or serum that does not rely on antibody reagents. Circulating levels of PINP showed age-dependent changes in rats. Prednisolone treatment, which is known to retard bone formation activity, led to a significant decrease in PINP, whereas PTH treatment dose-dependently increased PINP. The throughput of the assay parallels that of most antibody-based assays so that it can handle a large number of samples that are generated from preclinical animal studies. PINP in rats may serve as a biomarker for bone formation activity, and this assay could be instrumental in studying bone physiology in rat experimental models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available