4.4 Article

Comparative genomic analyses of seventeen Streptococcus pneumoniae strains:: Insights into the pneumococcal supragenome

Journal

JOURNAL OF BACTERIOLOGY
Volume 189, Issue 22, Pages 8186-8195

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00690-07

Keywords

-

Categories

Funding

  1. NIDCD NIH HHS [R01 DC005659, DC02148, DC04173, DC05659, R01 DC002148, R01 DC004173] Funding Source: Medline
  2. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

The distributed-genome hypothesis (DGH) states that pathogenic bacteria possess a supragenome that is much larger than the genome of any single bacterium and that these pathogens utilize genetic recombination and a large, noncore set of genes as a means of diversity generation. We sequenced the genomes of eight nasopharyngeal strains of Streptococcus pneumoniae isolated from pediatric patients with upper respiratory symptoms and performed quantitative genomic analyses among these and nine publicly available pneumococcal strains. Coding sequences from all strains were grouped into 3,170 orthologous gene clusters, of which 1,454 (46%) were conserved among all 17 strains. The majority of the gene clusters, 1,716 (54%), were not found in all strains. Genic differences per strain pair ranged from 35 to 629 orthologous clusters, with each strain's genome containing between 21 and 32% noncore genes. The distribution of the orthologous clusters per genome for the 17 strains was entered into the finite-supragenome model, which predicted that (i) the S. pneumoniae supragenome contains more than 5,000 orthologous clusters and (ii) 99% of the orthologous clusters (similar to 3,000) that are represented in the S. pneumoniae population at frequencies of >= 0.1 can be identified if 33 representative genomes are sequenced. These extensive genic diversity data support the DGH and provide a basis for understanding the great differences in clinical phenotype associated with various pneumococcal strains. When these findings are taken together with previous studies that demonstrated the presence of a supragenome for Streptococcus agalactiae and Haemophilus influenzae, it appears that the possession of a distributed genome is a common host interaction strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available