4.7 Article

Parametrized post-Friedmann framework for modified gravity

Journal

PHYSICAL REVIEW D
Volume 76, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.76.104043

Keywords

-

Ask authors/readers for more resources

We develop a parametrized post-Friedmann (PPF) framework which describes three regimes of modified gravity models that accelerate the expansion without dark energy. On large scales, the evolution of scalar metric and density perturbations must be compatible with the expansion history defined by distance measures. On intermediate scales in the linear regime, they form a scalar-tensor theory with a modified Poisson equation. On small scales in dark matter halos such as our own galaxy, modifications must be suppressed in order to satisfy stringent local tests of general relativity. We describe these regimes with three free functions and two parameters: the relationship between the two metric fluctuations, the large and intermediate scale relationships to density fluctuations, and the two scales of the transitions between the regimes. We also clarify the formal equivalence of modified gravity and generalized dark energy. The PPF description of linear fluctuation in f(R) modified action and the Dvali-Gabadadze-Porrati braneworld models show excellent agreement with explicit calculations. Lacking cosmological simulations of these models, our nonlinear halo-model description remains an ansatz but one that enables well-motivated consistency tests of general relativity. The required suppression of modifications within dark matter halos suggests that the linear and weakly nonlinear regimes are better suited for making a complementary test of general relativity than the deeply nonlinear regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available