4.7 Article

Flame retardant activity of SiO2-coated regenerated cellulose fibres

Journal

POLYMER DEGRADATION AND STABILITY
Volume 92, Issue 11, Pages 1957-1965

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2007.08.010

Keywords

regenerated cellulose fibres; thermal properties; silica; flame retardant

Ask authors/readers for more resources

An alternative route to lower the flammability of viscose fibres is presented. Instead of adding a flame retardant to the viscose dope chemically, we have grown a layer of silica (SiO2) on the surface of a regenerated cellulose fibre via a sol-gel process. One set of samples was used as-received, while the other was pre-treated in an 18% NaOH solution, giving a rough, etched surface to the fibre. The different surface morphology of both fibre types triggered a different growth of silica layers. On an untreated fibre, silica formed a 300-400 nm thick surface layer containing a high density of cracks and holes. Conversely, on a NaOH pre-treated fibre, the silica layer intruded into fibre interior, adhered more tightly to the fibre structure and formed an almost defect-free, thin (100 nm) layer on the outer fibre surface. This type of silica layer increased the temperature at which the fibre started to decompose by 20 degrees C. It also hindered significantly the flow of oxygen to the generated volatiles during the thermal decomposition, and increased the temperature of glowing combustion of the residual char; the temperature of the corresponding exothermic peaks increased by ca. 20 degrees C and 40 degrees C. In contrast, the thermal effects of silica coatings that grew on an untreated fibre were much smaller. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available