4.6 Article

Transcription of mammalian cytochrome c oxidase subunit IV-2 is controlled by a novel conserved oxygen responsive element

Journal

FEBS JOURNAL
Volume 274, Issue 21, Pages 5737-5748

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2007.06093.x

Keywords

electron transport chain; hypoxia; isoform; lung; mitochondria

Funding

  1. NIGMS NIH HHS [GM48517] Funding Source: Medline

Ask authors/readers for more resources

Subunit 4 of cytochrome c oxidase (CcO) is a nuclear-encoded regulatory subunit of the terminal complex of the mitochondrial electron transport chain. We have recently discovered an isoform of CcO 4 (CcO4-2) which is specific to lung and trachea, and is induced after birth. The role of CcO as the major cellular oxygen consumer, and the lung-specific expression of CcO4-2, led us to investigate CcO4-2 gene regulation. We cloned the CcO4-2 promoter regions of cow, rat and mouse and compared them with the human promoter. Promoter activity is localized within a 118-bp proximal region of the human promoter and is stimulated by hypoxia, reaching a maximum (threefold) under 4% oxygen compared with normoxia. CcO4-2 oxygen responsiveness was assigned by mutagenesis to a novel promoter element (5'-GGACGTTCCCACG-3') that lies within a 24-bp region that is 79% conserved in all four species. This element is able to bind protein, and competition experiments revealed that, within the element, the four core bases 5'-TCNCA-3' are obligatory for transcription factor binding. CcO isolated from lung showed a 2.5-fold increased maximal turnover compared with liver CcO. We propose that CcO4-2 expression in highly oxygenated lung and trachea protects these tissues from oxidative damage by accelerating the last step in the electron transport chain, leading to a decrease in available electrons for free radical formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available