4.7 Article

Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants

Journal

PLANT CELL REPORTS
Volume 26, Issue 11, Pages 2009-2015

Publisher

SPRINGER
DOI: 10.1007/s00299-007-0405-9

Keywords

5-OH-tryptophan; octopamine; serotonin; tryptamine; tryptamine 5-hydroxylase

Categories

Funding

  1. National Research Foundation of Korea [R11-2001-092-05001-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Serotonin is a well-known pineal hormone that in mammals plays a key role in mood. In plants, serotonin is implicated in several physiological roles such as flowering, morphogenesis, and adaptation to environmental changes. However, its biosynthetic enzyme in plants has not been characterized. Therefore, we measured the serotonin content and enzyme activity responsible for serotonin biosynthesis in rice seedlings. Tryptamine 5-hydroxylase (T5H), which converts tryptamine into serotonin, was found as a soluble enzyme that had maximal activity in the roots. The maximal activity of T5H was closely associated with the enriched synthesis of serotonin in roots. Tetrahydropterine-dependent T5H activity was inhibited by tyramine, tryptophan, 5-OH-tryptophan, and octopamine, but remained unaltered by dopamine in vitro. The tissues of rice seedlings grown in the presence of tryptamine exhibited a dose-dependent increase in serotonin in parallel with enhanced T5H enzyme activity. However, no significant increase in serotonin was observed in rice tissues grown in the presence of tryptophan, suggesting that tryptamine is a bottleneck intermediate substrate for serotonin synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available