4.6 Article

Thermal inactivation of foot-and-mouth disease viruses in suspension

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 73, Issue 22, Pages 7177-7184

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00629-07

Keywords

-

Ask authors/readers for more resources

The heat resistance of foot-and-mouth disease virus (FMDV) strains isolated from outbreaks in Thailand was investigated in phosphate-buffered saline (PBS) at 50, 60, 70, 80, 90, and 100 degrees C. The first-order kinetic model fitted most of the observed linear inactivation curves. The ranges of decimal- reduction time (D value) of FMDV strains at 50, 60, 70, 80, 90, and 100 degrees C were 732 to 1,275 s, 16.37 to 42.00 s, 6.06 to 10.87 s, 2.84 to 5.99 s, 1.65 to 3.18 s, and 1.90 to 2.94 s, respectively. The heat resistances of FMDV strains at lower temperature (50 degrees C) were not serotype specific. The effective inactivating temperature is approximately 60 degrees C. Heat resistances of FMDV strains at 90 and 100 degrees C were not statistically different (P > 0.05), while the FMDV serotype O (OPN) appeared to be the most heat resistant at 60 to 80 degrees C. The other observed inactivation curves were linear with shoulder or tailing (biphasic curves). The shoulder effect was mostly observed at 90 and 100 degrees C, while the tailing effect was mostly observed at 50 to 80 degrees C. The adjusted D values in the case of shoulder and tailing effects did not affect the overall estimated heat resistance of these FMDV strains, so even unadjusted D values of deviant inactivation curves were legitimate. The z values of FMDV serotypes O, A, and Asia 1 were 21.78 to 23.26, 20.75 to 22.79, and 19.87 degrees C, respectively. The z values of FMDV strains studied were not statistically significantly different (P > 0.05). The results of this study indicated that the heat resistance in PBS of FMDV strains from Thailand was much less than had been reported for foreign epidemic FMDV strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available