4.7 Article

NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke

Journal

STROKE
Volume 38, Issue 11, Pages 3000-3006

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.107.489765

Keywords

endothelium; ischemia/ reperfusion; oxidative stress; RhoA; statins

Ask authors/readers for more resources

Background and Purpose - Cerebral ischemia/reperfusion is associated with reactive oxygen species (ROS) generation, and NADPH oxidases are important sources of ROS. We hypothesized that NADPH oxidases mediate blood-brain barrier (BBB) disruption and contribute to tissue damage in ischemia/reperfusion. Methods - Ischemia was induced by filament occlusion of the middle cerebral artery in mice for 2 hours followed by reperfusion. BBB permeability was measured by Evans blue extravasation. Monolayer permeability was determined from transendothelial electrical resistance of cultured porcine brain capillary endothelial cells. Results - BBB permeability was increased in the ischemic hemisphere 1 hour after reperfusion. In NADPH oxidase knockout (gp91phox(-/-)) mice, middle cerebral artery occlusion-induced BBB disruption and lesion volume were largely attenuated compared with those in wild-type mice. Inhibition of NADPH oxidase by apocynin prevented BBB damage. In porcine brain capillary endothelial cells, hypoxia/reoxygenation induced translocation of the NADPH oxidase activator Rac-1 to the membrane. In vivo inhibition of Rac-1 by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin or Clostridium difficile lethal toxin B also prevented the ischemia/reperfusion-induced BBB disruption. Stimulation of porcine brain capillary endothelial cells with H2O2 increased permeability, an effect attenuated by inhibition of phosphatidyl inositol 3-kinase or c-Jun N-terminal kinase but not blockade of extracellular signal-regulated kinase-1/2 or p38 mitogen-activated protein kinase. Inhibition of Rho kinase completely prevented the ROS-induced increase in permeability and the ROS-induced polymerization of the actin cytoskeleton. Conclusions - Activation of Rac and subsequently of the gp91phox containing NADPH oxidase promotes cerebral ROS formation, which then leads to Rho kinase-mediated endothelial cell contraction and disruption of the BBB. Inhibition of NAPDH oxidase is a promising approach to reduce brain injury after stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available