4.6 Article

Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles

Journal

JOURNAL OF APPLIED PHYSICS
Volume 102, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2809368

Keywords

-

Ask authors/readers for more resources

It is known that silicon is an indirect band gap material, reducing its efficiency in photovoltaic applications. Using surface plasmons in metallic nanoparticles embedded in a solar cell has recently been proposed as a way to increase the efficiency of thin-film silicon solar cells. The dipole mode that dominates the plasmons in small particles produces an electric field having Fourier components with all wave numbers. In this work, we show that such a field creates electron-hole-pairs without phonon assistance, and discuss the importance of this effect compared to radiation from the particle and losses due to heating. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available