4.7 Article

A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9

Journal

MOLECULAR & CELLULAR PROTEOMICS
Volume 6, Issue 11, Pages 1855-1867

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M700183-MCP200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM38903] Funding Source: Medline

Ask authors/readers for more resources

Tetraspanins serve as molecular organizers of multiprotein microdomains in cell membranes. Hence to understand functions of tetraspanin proteins, it is critical to identify laterally interacting partner proteins. Here we used a novel technical approach involving exposure and cross-linking of membrane-proximal cysteines coupled with LC-MS/MS protein identification. In this manner we identified nine potential tetraspanin CD9 partners, including claudin-1. Chemical cross-linking yielded a CD9-claudin-1 heterodimer, thus confirming direct association and adding claudin-1 to the short list of proteins that can directly associate with CD9. Interaction of CD9 (and other tetraspanins) with claudin-1 was supported by subcellular colocalization and was confirmed in multiple cell lines, although other claudins (claudin- 2, -3, -4, -5, and -7) associated to a much lesser extent. Moreover claudin- 1 was distributed very similarly to CD9 in sucrose gradients and, like CD9, was released from A431 and A549 cells upon cholesterol depletion. These biochemical features of claudin-1 are characteristic of tetraspanin microdomain proteins. Although claudins are major structural components of intercellular tight junctions, CD9-claudin-1 complexes did not reside in tight junctions, and depletion of key tetraspanins (CD9 and CD151) by small interfering RNA had no effect on paracellular permeability. However, tetraspanin depletion did cause a marked decrease in the stability of newly synthesized claudin-1. In conclusion, these results (a) validate a technical approach that appears to be particularly well suited for identifying protein partners directly associated with tetraspanins or with other proteins that contain membrane-proximal cysteines and (b) provide insight into how non-junctional claudins may be regulated in the context of tetraspanin-enriched microdomains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available