4.7 Review

Laser-induced Fourier transform ion cyclotron resonance mass spectrometry of organic and inorganic compounds: methodologies and applications

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 389, Issue 5, Pages 1381-1396

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-007-1491-9

Keywords

laser desorption; laser ablation; FTICRMS; complex mixtures; pollutants; laser microprobe

Ask authors/readers for more resources

The combination of a laser with a Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS) enables a variety of MS experiments to be conducted. The laser can be used either as an intense photonic source for the photoionization of neutral species introduced in a variety of ways into the FTICR cell, or it can be made to directly interact with a solid, generating gas-phase ions. Depending on the experimental conditions used, various laser-matter interactions can occur. When high laser energy (also referred to as power density or irradiance) is used, laser ablation (LA) processes lead to the release of species into the gas phase, a significant fraction of which are ionic. The number of ions decreases with the irradiance. For low irradiance values, the so-called laser desorption (LD) regime applies, where the expelled species are mainly neutrals. LA-FTICRMS and LD-FTICRMS can be used to study a wide range of materials, including mineral, organic, hybrid and biological compounds (although matrix-assisted laser desorption ionization, MALDI, which is not reviewed in this paper, is more commonly applied to biological compounds). This paper will review a selection of methodological developments and applications in the field of laser ionization FTICRMS, LD-FTICRMS, and LA-FTICRMS for the analysis of organics and inorganics in complex mixtures, emphasizing insoluble materials. Specifically, silicate- and carbon-based complex materials as well as organic compounds will be examined due to their relevance to natural environmental and anthropogenic matrices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available