4.6 Review

The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 171, Issue 5, Pages 1407-1418

Publisher

ELSEVIER SCIENCE INC
DOI: 10.2353/ajpath.2007.070251

Keywords

-

Categories

Ask authors/readers for more resources

The study of the cellular and molecular pathogenesis of heart valve disease is an emerging area of research made possible by the availability of cultures of valve interstitial cells (VICs) and valve endothelial cells (VECs) and by the design and use of in vitro and in vivo experimental systems that model elements of valve biological and pathobiological activity. VICs are the most common cells in the valve and are distinct from other mesenchymal cell types in other organs. We present a conceptual approach to the investigation of VICs by focusing on VIC phenotype-function relationships. Our review suggests that there are five identifiable phenotypes of VICs that define the current understanding of their cellular and molecular functions. These include embryonic progenitor endothelial/mesenchymal cells, quiescent VICs (qVICs), activated VICs (aVlCs), progenitor VICs (pVICs), and ostcoblastic VICs (obVICs). Although these may exhibit plasticity and may convert from one form to another, compartmentalizing VIC function into distinct phenotypes is useful in bringing clarity to our understanding of VIC pathobiology. We present a conceptual model that is useful in the design and interpretation of studies on the function of an important phenotype in disease, the activated VIC. We hope this review will inspire members of the investigative pathology community to consider valve pathobiology as an exciting new frontier exploring pathogenesis and discovering new therapeutic targets in cardiovascular diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available