4.6 Article

Constrained reliability-based optimization of linear tuned mass dampers for seismic control

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 44, Issue 22-23, Pages 7370-7388

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2007.04.012

Keywords

structural control; tuned mass damper; optimization; stochastic process

Categories

Ask authors/readers for more resources

This paper deals with the optimum design of vibration absorbers utilized to reduce undesirable vibrational effects which are originated in linear structures by seismic excitations. The single linear tuned mass dampers problem is treated and it is assumed that earthquake can be represented by a stationary filtered stochastic process. In the present problem, the objective is to minimize the maximum of the dimensionless peak of displacement of the protected system with respect to the unprotected one. Moreover, the constrained optimization problem is also analysed, in which a limitation of tuned probability of failure is imposed, where failure is related to threshold crossing probability by the maximum displacement over an admissible value. Examples are given to illustrate the efficiency of the proposed method. The variation of the optimum solution versus structural and input characteristics is analysed for the unconstrained and constrained optimization problems. A sensitivity analysis is carried out, and results are presented useful for the first design of the vibrations control strategy. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available