3.9 Article

Iron stress increases Bordetella pertussis mucin-binding capacity and attachment to respiratory epithelial cells

Journal

FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY
Volume 51, Issue 2, Pages 414-421

Publisher

WILEY
DOI: 10.1111/j.1574-695X.2007.00320.x

Keywords

Bordetella pertussis; iron stress; attachment

Ask authors/readers for more resources

Whooping cough is a reemerging infectious disease of the respiratory tract caused by Bordetella pertussis. The incomplete understanding of the molecular mechanisms of host colonization hampers the efforts to control this disease. Among the environmental factors that commonly determine the bacterial phenotype, the concentration of essential nutrients is of particular importance. Iron, a crucial and scarce nutrient in the natural environment of B. pertussis, has been found to induce substantial phenotypic changes in this pathogen. However, the relevance of this phenotype for the interaction with host cells was never investigated. Using an in vitro model for bacterial attachment, it was shown that the attachment capacity of B. pertussis to epithelial respiratory cells is enhanced under iron stress conditions. Attachment is mediated by iron-induced surface-exposed proteins with sialic acid-binding capacity. The results further suggest that some of these iron-induced surface-associated proteins are immunogenic and may represent attractive vaccine candidates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available