4.5 Article

Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol bis(diphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends

Journal

POLYMER INTERNATIONAL
Volume 56, Issue 11, Pages 1404-1414

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/pi.2290

Keywords

aryl phosphates; PC/ABS; flame retardant; pyrolysis; flammability

Ask authors/readers for more resources

The flame retardancy mechanisms of three aryl phosphates, triphenyl phosphate (TPP), resorcinol bis(diphenyl phosphate) (RDP) and bisphenol A bis(diphenyl phosphate) (BDP), in a polycarbonate/acrylonitrile-butadiene-styrene (PUABS) blend are investigated and compared. Further, the influence of polytetrafluorethylene (PTFE) on viscosity and thermal decomposition is discussed in the systems PC/ABS and PC/ABS + BDP. Mechanisms are proposed based on the results of various methods. Thermogravimetric analysis, Fourier transform infrared spectroscopy and kinetics are used to study the pyrolysis. The fire behaviour is studied by means of cone calorimeter measurements at different heat fluxes and the flammability is specified by limiting oxygen index (LOI) and UL 94. Rheology measurements are used to illuminate the changed dripping behaviour due to PTFE. TPP shows only a gas phase action. RDP shows mainly a gas phase action and some condensed phase action. BDP shows a crucial condensed phase action in addition to a gas phase action. TPP and RDP are somewhat superior in terms of flammability (LOI), whereas BDP shows superior performance in forced flaming combustion (cone calorimeter). Synergistic effects between PTFE and BDP are found. 0 2007 Society of Chemical Industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available