4.1 Article

Molecular dynamics studies on the thermostability of family 11 xylanases

Journal

PROTEIN ENGINEERING DESIGN & SELECTION
Volume 20, Issue 11, Pages 551-559

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzm056

Keywords

denaturation; molecular dynamics; thermostability; unfolding pathway; xylanase family 11

Ask authors/readers for more resources

Twelve members of the family 11 xylanases, including both mesophilic and thermophilic proteins, were studied using molecular dynamics (MD). Simulations of xylanases were carried out in an explicit water environment at four different temperatures, 300, 400, 500 and 600 K. A difference in thermotolerance between mesophilic and thermophilic xylanases became clear: thermophilic xylanases endured heat in higher simulation temperatures better than mesophilic ones. The unfolding pathways seemed to be similar for all simulations regardless of the protein. The unfolding initiates at the N-terminal region or alternatively from the alpha-helix region and proceeds to the 'finger region'. Unfolding of these regions led to denaturated structures within the 4.5 ns simulation at 600 K. The results are in agreement with experimental mutant studies. The results show clearly that the stability of the protein is not evenly distributed over the whole structure. The MD analysis suggests regions in the protein structure which are more unstable and thus potential targets for mutation experiments to improve thermostability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available