4.4 Article

Local Adaptation along Smooth Ecological Gradients Causes Phylogeographic Breaks and Phenotypic Clustering

Journal

AMERICAN NATURALIST
Volume 180, Issue 1, Pages 35-49

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/666002

Keywords

coalescent theory; genealogy; local adaptation; mitochondrial DNA; natural selection; phylogeography

Funding

  1. Natural Sciences and Engineering Research Council of Canada [311931-2005, 311931-2010]

Ask authors/readers for more resources

Coalescent theory has provided a basis for evolutionary biologists to build sophisticated methods for inferring population history from variation in genetic markers, but these methods leave out a major conceptual cornerstone of modern evolutionary theory: natural selection. I provide the first quantitative analysis of the effects of selection on genealogical patterns in a continuously distributed population in which the selective optimum for a trait linked to the marker varies gradually and continuously across the landscape. Simulations show that relatively weak selection for local adaptation can lead to strong phylogeographic structure, in which highly divergent genealogical groups (i.e., clades) are geographically localized and differentially adapted, and dramatically increased standing variation (e.g., coalescence time) compared to neutral expectations. This pattern becomes more likely with increasing population size and with decreasing dispersal distances, mutation rates, and mutation sizes. Under some conditions, the system alternates between a nearly neutral behavior and a behavior in which highly divergent clades are locally adapted. Natural selection on markers commonly used in phylogeographic studies (such as mitochondrial DNA) presents a major challenge to the inference of biogeographic history but also provides exciting opportunities to study how selection affects both between- and within-species biodiversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available