4.5 Article

2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol1-yl]-phenyl} acetamide (OSU-03012), a celecoxib derivative, directly targets p21-activated kinase

Journal

MOLECULAR PHARMACOLOGY
Volume 72, Issue 5, Pages 1124-1131

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.107.037556

Keywords

-

Funding

  1. NCI NIH HHS [R-01-CA102572-02, R21-01-CA111461-01] Funding Source: Medline

Ask authors/readers for more resources

p21-Activated kinases (PAKs) are regulators of cell motility and proliferation. PAK activity is regulated in part by phosphoinositide-dependent kinase 1 (PDK1). We hypothesized that reduced PAK activity was involved in the effects of 2-amino-N-{4-[5-(2phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a previously characterized PDK1 inhibitor derived from celecoxib. In three human thyroid cancer cell lines, OSU-03012 inhibited cell proliferation with reduced AKT phosphorylation by PDK1. OSU-03012 unexpectedly inhibited PAK phosphorylation at lower concentrations than PDK1-dependent AKT phosphorylation in two of the three lines. In cell-free kinase assays, OSU-03012 was shown to inhibit PAK activity and compete with ATP binding. In addition, computer modeling predicted a docking site for OSU-03012 in the ATP binding motif of PAK1. Finally, overexpression of constitutively activated PAK1 partially rescued the ability of motile NPA thyroid cancer cells to migrate during OSU-03012 treatment, suggesting that inhibition of PAK may be involved in the cellular effects of OSU-03012 in these cells. In summary, OSU-03012 is a direct inhibitor of PAK, and inhibition of PAK, either directly or indirectly, may be involved in its biological effects in vitro.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available