4.4 Article

Hydrodynamic Simulations of unitraveling-carrier photodiodes

Journal

IEEE JOURNAL OF QUANTUM ELECTRONICS
Volume 43, Issue 11-12, Pages 1088-1094

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JQE.2007.905885

Keywords

hot carriers; photodiodes (PDs); semiconductor device modeling; semiconductor heterojunctions

Ask authors/readers for more resources

We present simulated results of a unitraveling-carrier photodiode (UTC-PD) using the hydrodynamic carrier transportation model. A maximum responsivity of 0.25 A/W and a small-signal 3-dB bandwidth of 52 GHz were obtained for a 220-nm-thick InGaAs absorption layer. The physical properties of the UTC-PD have been investigated at different optical injection levels. Modulation of the energy-band profile due to the space charge effect has been observed at high injection level, and an electron velocity overshoot of 3 x 10(7) cm/s has been found to effectively delay the onset of space charge effects. Comparisons with reported simulated results using the drift-diffusion model as well as reported experimental results are presented. The results suggest the necessity of using the hydrodynamic transport equations to accurately model the UTC-PD. In addition, it has been corroborated that the photoresponse of the UTC-PD could be improved by incorporating a graded doping profile in the absorption layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available