4.7 Review

Application of FT-ICR-MS for the study of proton-transfer reactions involving biomolecules

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 389, Issue 5, Pages 1365-1380

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-007-1508-4

Keywords

Fourier transform ion cyclotron resonance mass spectrometry; biomolecules; gas-phase; acidity-basicity; zwitterions

Ask authors/readers for more resources

Fourier transform ion cyclotron resonance mass spectrometry, combined with modern ionization (fast atom bombardment , electrospray ionization, matrix-assisted laser desorption-ionization), fragmentation (collision-induced dissociation, surface-induced dissociation, one-photon ultraviolet photodissociation, infrared multiphoton dissociation, blackbody infrared radiative dissociation, electron-capture dissociation), and separation (high-performance liquid chromatography, liquid chromatography, capillary electrophoresis) techniques is now becoming one of the most attractive and frequently used instrumental platforms for gas-phase studies of biomolecules such as amino acids, bioamines, peptides, polypeptides, proteins, nucleobases, nucleosides, nucleotides, polynucleotides, nucleic acids, saccharides, polysaccharides, etc. Since it gives the possibilities to trap the ions from a few seconds up to thousands of seconds, it is often applied to study ion/molecule reactions in the gas phase, particularly proton-transfer reactions which provide important information on acid-base properties. These properties determine in part the three-dimensional structure of biomolecules, most of their intramolecular and intermolecular interactions, and consequently their biological activity. They also indicate the form (unionized, zwitterionic, protonated, or deprotonated) which the biomolecule may take in a nonpolar environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available