4.7 Article

Inhibition of hepatitis C virus internal ribosome entry site-mediated translation by an RNA targeting the conserved IIIf domain

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 64, Issue 22, Pages 2994-3006

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-007-7345-y

Keywords

aptamer; ribozyme; HCV targeting; RNA-based inhibitors; gene silencing

Ask authors/readers for more resources

Hepatitis C virus (HCV) translation initiation depends on an internal ribosome entry site (IRES). We previously identified an RNA molecule (HH363-10) able to bind and cleave the HCV IRES region. This paper characterizes its capacity to interfere with IRES function. Inhibition assays showed that it blocks IRES activity both in vitro and in a human hepatoma cell line. Although nucleotides involved in binding and cleavage reside in separate regions of the inhibitor HH363-10, further analysis demonstrated the strongest effect to be an intrinsic feature of the entire molecule; the abolishment of either of the two activities resulted in a reduction in its function. Probing assays demonstrate that HH363 - 10 specifically interacts with the conserved IIIf domain of the pseudoknot structure in the IRES, leading to the inhibition of the formation of translationally competent 80S particles. The combination of two inhibitory activities targeting different sequences in a chimeric molecule may be a good strategy to avoid the emergence of resistant viral variants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available