4.6 Article

Quantum phase transitions and dimensional reduction in antiferromagnets with interlayer frustration

Journal

PHYSICAL REVIEW B
Volume 76, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.180401

Keywords

-

Ask authors/readers for more resources

For magnets with a fully frustrated interlayer interaction, we argue that the quantum phase transitions from a paramagnetic to an antiferromagnetic ground state, driven by pressure or magnetic field, are asymptotically three dimensional, due to interaction-generated nonfrustrated interlayer couplings. However, the relevant crossover scale is tiny, such that two-dimensional behavior occurs in an experimentally relevant low-temperature regime. In the pressure-driven case the phase transition may split, in which case an Ising symmetry related to interlayer bond order is broken before magnetism occurs. We discuss the relation of our results to recent experiments on BaCuSi(2)O(6).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available