4.4 Article

Seasonal Redistribution of Immune Function in a Migrant Shorebird: Annual-Cycle Effects Override Adjustments to Thermal Regime

Journal

AMERICAN NATURALIST
Volume 172, Issue 6, Pages 783-796

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/592865

Keywords

annual cycle; immune function; immune strategies; temperature; red knot; Calidris canutus

Ask authors/readers for more resources

Throughout the annual cycle, demands on competing physiological systems change, and animals must allocate resources to maximize fitness. Immune function is one such system and is important for survival. Yet detailed empirical data tracking immune function over the entire annual cycle are lacking for most wild animals. We measured constitutive immune indices once a month for a year on captive red knots (Calidris canutus). We also examined temperature as an environmental contributor to immune variation by manipulating ambient temperature to vary energy expenditure. To identify relationships among immune indices, we performed principal-component analysis. We found significant repeatability in immune indices over the annual cycle and covariation of immune indices within and among individuals. This covariation suggests immune strategies as individual traits among individuals and the use of different immune strategies during different annual-cycle stages within individuals. Over the annual cycle, both higher-cost phagocyte-based immunity and lower-cost lymphocyte-based immunity were high during mass change, but there was a clear shift toward lower-cost lymphocyte-based immunity during peak molt. Experimental manipulation of temperature had little effect on annual variation in immune function. This suggests that other environmental factors, such as food availability and disease, should also be examined in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available