4.4 Review

A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: Assessing applicability as recorders of ancient coldwater conditions

Journal

JOURNAL OF SEDIMENTARY RESEARCH
Volume 77, Issue 11-12, Pages 980-991

Publisher

SEPM-SOC SEDIMENTARY GEOLOGY
DOI: 10.2110/jsr.2007.087

Keywords

-

Categories

Ask authors/readers for more resources

Calcite pseudomorphs after ikaite (glendonite) are associated with coldwater depositional systems, including glaciomarine and deepwater settings, as dictated by the limited stability field of ikaite. 1kaite precipitation is favored by elevated alkalinity and dissolved phosphate, conditions encountered commonly in association with organic-rich marine sediments where methane oxidation is occurring. The rapid recrystallization of ikaite to calcite during slight warming or pressure release results in considerable solid volume loss, producing a highly porous crystal mesh. Preservation of the original ikaite crystal form requires precipitation of diagenetic calcite cement during early burial to prevent compaction and collapse of pseudomorph structures. During later burial diagenesis remaining pore space may be filled with deeper burial calcite cement. Glendonites from the Permian of the Sydney Basin occur in subtidal shelf facies containing glacial dropstones and a normal marine fauna. Stable oxygen isotope signatures of modern ikaite suggest carbonate precipitation in equilibrium with ambient seawater; carbon signatures are usually strongly negative relative to normal marine carbonate, consistent with derivation of carbonate from methane oxidation. Review of published data suggests that while Holocene glendonite may provide reliable isotopic records of the conditions of ikaite precipitation, precipitation of later calcite cement within the glendonite structure reduces the significance of the isotopic signature as an indicator of gimary depositional conditions. Bulk glendonite samples from the Permian Sydney Basin, Australia, have a broad range of delta O-18 and delta C-13 (delta O-18 PDB = -5 to -15 parts per thousand; delta C-13 = -8 to -16 parts per thousand), in contrast to the narrow range for brachiopod carbonate (delta O-18 PDB = +1 to -5 parts per thousand; delta C-13 = +5 to +7 parts per thousand) from the same strata. Handpicked separates of primary glendonite and secondary calcite also have a wide range of stable isotope values. The data from Sydney Basin glendonites indicate that diagenetic precipitation of calcite has blurred the isotopic signature of primary ikaite replacement calcite at the scale of micosampling done in this study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available