4.5 Article

The d-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and d-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose

Journal

MOLECULAR MICROBIOLOGY
Volume 66, Issue 4, Pages 890-900

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2007.05953.x

Keywords

-

Funding

  1. Austrian Science Fund FWF [P 19421] Funding Source: Medline

Ask authors/readers for more resources

The Hypocrea jecorina D-xylose reductase encoding gene xyl1 shows low basal transcript levels, and is induced by D-xylose, L-arabinose and L-arabinitol and, to a lesser extent, by lactose, D-galactose, galactitol and xylitol. The recombinantly expressed XYL1 catalyzes the NADPH-dependent reduction of the pentoses D-xylose and L-arabinose and the hexose D-galactose. Deletion of xyl1 slightly reduces growth on all carbon sources, but a significant decrease is found on D-xylose, L-arabinose and D-galactose. Similar to pentose degradation, XYL1 reduces D-galactose to galactitol in a recently identified second D-galactose pathway. Strains impaired in both D-galactose pathways are almost unable to grow on D-galactose. Delta xyl1 strains show reduced growth on lactose and are impaired in beta-galactosidase expression and induction of the major cellobiohydrolase gene cbh1. A strain deleted in the cellulase regulator XYR1 is even more severely impaired in growth and beta-galactosidase expression on lactose, and does not produce any cbh1 transcript at all. In this strain, only a low basal level of xyl1 transcription is found on lactose. Galactitol, but not D-galactose is able to induce xyl1 transcription in a XYR1-independent manner. Our results show that the role of the H. jecorina XYL1 is not restricted to D-xylose catabolism and demonstrates its importance for induction of cellulases and beta-galactosidases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available